O cérebro de um bebê nasce imaturo e é uma máquina de aprendizagem! Passa por uma modelagem durante o desenvolvimento e recebe informações do ambiente, construindo seus circuitos neuronais e sinapses. Os sistemas sensoriais são a nossa porta de entrada, como a audição.
A PLASTICIDADE NEURONAL é a capacidade do sistema nervoso de se reorganizar em resposta aos sentidos. O aumento do estímulo causa um crescimento das sinapses durante os primeiros quatro anos de vida e diminuem posteriormente, a chamada PODA NEURAL ou NEURONAL.
A plasticidade neuronal é fundamental na abordagem da surdez, pois muda a entrada sensorial e causa uma reorganização plástica no cérebro conforme o estímulo.
Na surdez congênita, a plasticidade diminui com a idade e não pode ser substituída ou controlada pelo cérebro e a terapia tardia torna-se menos eficiente.
Vários tipos de períodos sensíveis no desenvolvimento cerebral já foram identificados:
-períodos em que a experiência é necessária para o desenvolvimento de uma determinada habilidade (períodos sensíveis para o desenvolvimento);
-períodos em que o sistema é vulnerável pela manipulação da experiência como a privação monocular (períodos sensíveis para danos);
-períodos em que a terapia (compensação de um déficit) só é parcialmente possível após determinada idade por ter sido perdida (períodos sensíveis para recuperação);
-um tipo distinto de período sensível deve ser adicionalmente diferenciado: períodos de recuperação da privação total.
A completa privação sensorial desde o nascimento deixa o sistema sensorial funcionalmente “ingênuo”, que é distinto da experiência juvenil anormal (como privação monocular ou estrabismo). Deixa o sistema sensorial privado funcionalmente incompetente para desempenhar sua função. Na experiência anormal, o sistema sensorial manipulado ainda é usado para controlar a função, mas está sujeito a entrada de estímulo anormal (input). O estado “ingênuo” abre a possibilidade de reorganização transmodal dos circuitos neuronais, processos degenerativos (funcionais e morfológicos) e outros processos que não ocorrem se o sistema permanecer funcional (embora com entrada ou input anormal).
Portanto, quanto mais precoce a surdez, maiores são as consequências no sistema nervoso central. Quando ela ocorre ainda na vida intrauterina, os déficits são mais extensos e afetam todo o sistema auditivo, tanto periférico (a cóclea) quanto o central (nervo coclear e córtex auditivo temporal no cérebro). Ao nascimento, os danos são menos extensos, mas ainda assim afetam o desenvolvimento cortical. É a SURDEZ PRÉ-LINGUAL, aquela que ocorre antes da aquisição da fala e linguagem.
No adulto, o cérebro já tem memória auditiva pelos estímulos recebidos anteriormente quando a entrada ou input eram normais ou presentes, ainda que parcialmente, portanto os déficits são menores, a chamada surdez PÓS-LINGUAL. Evidentemente, quanto maior o tempo de surdez, maiores as consequências da privação sonora e pior o resultado do tratamento, seja ele por aparelhos auditivos convencionais ou mesmo o implante coclear.
Portanto, quanto mais precoce for o tratamento, maior a estimulação no período crítico e menor a perda de sinapses no cérebro, melhorando os resultados de discriminação sonora (compreensão dos sons) e o desenvolvimento da fala e linguagem. A indicação do IMPLANTE COCLEAR pode ocorrer já a partir de 6 meses de idade, contanto que se tenha CERTEZA do diagnóstico da surdez e da falta de acesso aos sons da fala com os aparelhos auditivos convencionais nas várias avaliações fonoaudiológicas comportamentais que sempre devem ser feitas, o que chamamos de TERAPIAS DIAGNÓSTICAS, ou seja, terapias para estímulo mas ao mesmo tempo para se avaliar o resultado com os aparelhos auditivos e o ganho funcional auditivo.
Lembramos sempre que o implante coclear não faz entender, faz ouvir, já que ouvimos com os ouvidos, mas entendemos com o cérebro, o qual precisa de estimulação intensa durante os primeiros anos de vida para que todas as capacidades cognitivas e sensoriais possam se desenvolver adequadamente.
Por todos estes motivos é que apoiamos fortemente os projetos de Triagem Auditiva Neonatal Universal (TANU) e todas as ações de divulgação e conscientização sobre o diagnóstico precoce da surdez!

REFERÊNCIAS
1. Kral A, Hartmann R, Tillein J, Heid S, Klinke R. Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurotol. 2001;6(06):346–362. [PubMed] [Google Scholar]
2. Yoshinaga-Itano C, Sedey A L, Wiggin M, Mason C A. Language outcomes improved through early hearing detection and earlier cochlear implantation. Otol Neurotol. 2018;39(10):1256–1263. [PubMed] [Google Scholar]
3. Gordon K, Henkin Y, Kral A. Asymmetric hearing during development: the aural preference syndrome and treatment options. Pediatrics. 2015;136(01):141–153. [PubMed] [Google Scholar]
4. Gordon K, Kral A. Animal and human studies on developmental monaural hearing loss. Hear Res. 2019;380:60–74. [PubMed] [Google Scholar]
5. Litovsky R Y, Gordon K. Bilateral cochlear implants in children: effects of auditory experience and deprivation on auditory perception. Hear Res. 2016;338:76–87. [PMC free article] [PubMed] [Google Scholar]
6. Bess F H, Tharpe A M. Unilateral hearing impairment in children. Pediatrics. 1984;74(02):206–216. [PubMed] [Google Scholar]
7. Swami H, Ap A, Shivanand S. Cost-effectiveness of pediatric unilateral/bilateral cochlear implant in a developing country. Otol Neurotol. 2021;42(01):e33–e39. [PubMed] [Google Scholar]
8. Marx M, Mosnier I, Venail F.Cochlear implantation and other treatments in single-sided deafness and asymmetric hearing loss: results of a national multicenter study including a randomized controlled trial Audiol Neurootol(Published online March 31, 2021)10.1159/000514085 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Huttenlocher P R, Dabholkar A S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(02):167–178. [PubMed] [Google Scholar]
10. Meredith M A, Kryklywy J, McMillan A J, Malhotra S, Lum-Tai R, Lomber S G. Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex. Proc Natl Acad Sci U S A. 2011;108(21):8856–8861. [PMC free article] [PubMed] [Google Scholar]
11. Lee H J, Giraud A L, Kang E. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex. 2007;17(04):909–917. [PubMed] [Google Scholar]
12. Giraud A L, Lee H J.Predicting cochlear implant outcome from brain organisation in the deaf Restor Neurol Neurosci 200725(3-4):381–390. [PubMed] [Google Scholar]
13. Ching T YC, Dillon H, Button L. Age at intervention for permanent hearing loss and 5-year language outcomes. Pediatrics. 2017;140(03):e20164274. [PMC free article] [PubMed] [Google Scholar]
14. Ponton C W, Eggermont J J. Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurotol. 2001;6(06):363–380. [PubMed] [Google Scholar]
15. Sharma A, Dorman M, Spahr A, Todd N W. Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol Suppl. 2002;189:38–41. [PubMed] [Google Scholar]
16. Geers A, Brenner C, Davidson L.Factors associated with development of speech perception skills in children implanted by age five Ear Hear 200324(1, Suppl):24S–35S. [PubMed] [Google Scholar]
17. Lieu J E, Tye-Murray N, Karzon R K, Piccirillo J F. Unilateral hearing loss is associated with worse speech-language scores in children. Pediatrics. 2010;125(06):e1348–e1355. [PMC free article] [PubMed] [Google Scholar]
18. Lieu J E. Speech-language and educational consequences of unilateral hearing loss in children. Arch Otolaryngol Head Neck Surg. 2004;130(05):524–530. [PubMed] [Google Scholar]
19. Karande S, Ramadoss D, Gogtay N. Economic burden of slow learners: a prevalence-based cost of illness study of its direct, indirect, and intangible costs. J Postgrad Med. 2019;65(04):219–226. [PMC free article] [PubMed] [Google Scholar]
20. Le H ND, Gold L, Mensah F. Service utilisation and costs of language impairment in children: the early language in Victoria Australian population-based study. Int J Speech Lang Pathol. 2017;19(04):360–369. [PubMed] [Google Scholar]
21. GBD 2019 Hearing Loss Collaborators Hearing loss prevalence and years lived with disability, 1990-2019: findings from the Global Burden of Disease Study 2019 Lancet 2021397(10278):996–1009. [PMC free article] [PubMed] [Google Scholar]
22. Grothe B, Pecka M. The natural history of sound localization in mammals – a story of neuronal inhibition. Front Neural Circuits. 2014;8:116. [PMC free article] [PubMed] [Google Scholar]
23. Hawley M L, Litovsky R Y, Culling J F. The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. J Acoust Soc Am. 2004;115(02):833–843. [PubMed] [Google Scholar]
24. Gordon K A, Wong D D, Papsin B C.Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf Brain 2013136(Pt 5):1609–1625. [PubMed] [Google Scholar]
25. Polonenko M J, Papsin B C, Gordon K A. Delayed access to bilateral input alters cortical organization in children with asymmetric hearing. Neuroimage Clin. 2017;17:415–425. [PMC free article] [PubMed] [Google Scholar]
26. Hyde M L. Newborn hearing screening programs: overview. J Otolaryngol. 2005;34 02:S70–S78. [PubMed] [Google Scholar]
27. Patel H, Feldman M. Universal newborn hearing screening. Paediatr Child Health. 2011;16(05):301–310. [PMC free article] [PubMed] [Google Scholar]
28. Fitzpatrick E M, Whittingham J, Durieux-Smith A. Mild bilateral and unilateral hearing loss in childhood: a 20-year view of hearing characteristics, and audiologic practices before and after newborn hearing screening. Ear Hear. 2014;35(01):10–18. [PubMed] [Google Scholar]
29. Goderis J, De Leenheer E, Smets K, Van Hoecke H, Keymeulen A, Dhooge I. Hearing loss and congenital CMV infection: a systematic review. Pediatrics. 2014;134(05):972–982. [PubMed] [Google Scholar]
30. Khurana P, Cushing S L, Chakraborty P K. Early hearing detection and intervention in Canada. Paediatr Child Health. 2020;26(03):141–144. [PMC free article] [PubMed] [Google Scholar]
31. Cushing S L, Gordon K A, Sokolov M, Papaioannou V, Polonenko M, Papsin B C. Etiology and therapy indication for cochlear implantation in children with single-sided deafness: retrospective analysis. HNO. 2019;67(10):750–759. [PubMed] [Google Scholar]
32. Polonenko M J, Gordon K A, Cushing S L, Papsin B C. Cortical organization restored by cochlear implantation in young children with single sided deafness. Sci Rep. 2017;7(01):16900. [PMC free article] [PubMed] [Google Scholar]
33. Polonenko M J, Papsin B C, Gordon K A. Limiting asymmetric hearing improves benefits of bilateral hearing in children using cochlear implants. Sci Rep. 2018;8(01):13201. [PMC free article] [PubMed] [Google Scholar]
34. Nicholas J G, Geers A E. Spoken language benefits of extending cochlear implant candidacy below 12 months of age. Otol Neurotol. 2013;34(03):532–538. [PMC free article] [PubMed] [Google Scholar]
35. Position Statement: Principles and guidelines for early hearing detection and intervention programs. Journal of Early Hearing Detection and Intervention 20194021–44.. DOI:https://doi.org/10.15142/fptk-b748 [Google Scholar]
36. Gifford R H. Bilateral cochlear implants or bimodal hearing for children with bilateral sensorineural hearing loss. Curr Otorhinolaryngol Rep. 2020;8(04):385–394. [PMC free article] [PubMed] [Google Scholar]
37. Daya H, Figueirido J C, Gordon K A, Twitchell K, Gysin C, Papsin B C. The role of a graded profile analysis in determining candidacy and outcome for cochlear implantation in children. Int J Pediatr Otorhinolaryngol. 1999;49(02):135–142. [PubMed] [Google Scholar]
38. Nikolopoulos T P, Gibbin K P, Dyar D. Predicting speech perception outcomes following cochlear implantation using Nottingham children’s implant profile (NChIP) Int J Pediatr Otorhinolaryngol. 2004;68(02):137–141. [PubMed] [Google Scholar]
39. Morera C, Manrique M, Ramos A. Advantages of binaural hearing provided through bimodal stimulation via a cochlear implant and a conventional hearing aid: a 6-month comparative study. Acta Otolaryngol. 2005;125(06):596–606. [PubMed] [Google Scholar]
40. Ching T YC, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear. 2004;25(01):9–21. [PubMed] [Google Scholar]
41. Kühn-Inacker H, Shehata-Dieler W, Müller J, Helms J. Bilateral cochlear implants: a way to optimize auditory perception abilities in deaf children? Int J Pediatr Otorhinolaryngol. 2004;68(10):1257–1266. [PubMed] [Google Scholar]
42. Papsin B C, Gordon K A. Bilateral cochlear implants should be the standard for children with bilateral sensorineural deafness. Curr Opin Otolaryngol Head Neck Surg. 2008;16(01):69–74. [PubMed] [Google Scholar]
43. Illg A, Sandner C, Büchner A, Lenarz T, Kral A, Lesinski-Schiedat A. The optimal inter-implant interval in pediatric sequential bilateral implantation. Hear Res. 2019;372:80–87. [PubMed] [Google Scholar]
44. Jiwani S, Papsin B C, Gordon K A. Early unilateral cochlear implantation promotes mature cortical asymmetries in adolescents who are deaf. Hum Brain Mapp. 2016;37(01):135–152. [PMC free article] [PubMed] [Google Scholar]
45. Jiwani S, Papsin B C, Gordon K A. Central auditory development after long-term cochlear implant use. Clin Neurophysiol. 2013;124(09):1868–1880. [PubMed] [Google Scholar]
46. Lammers M J, Grolman W, Smulders Y E, Rovers M M. The cost-utility of bilateral cochlear implantation: a systematic review. Laryngoscope. 2011;121(12):2604–2609. [PubMed] [Google Scholar]
47. Health Quality Ontario . Bilateral cochlear implantation: a health technology assessment. Ont Health Technol Assess Ser. 2018;18(06):1–139. [PMC free article] [PubMed] [Google Scholar]
48. Gordon K A, Valero J, van Hoesel R, Papsin B C. Abnormal timing delays in auditory brainstem responses evoked by bilateral cochlear implant use in children. Otol Neurotol. 2008;29(02):193–198. [PubMed] [Google Scholar]
49. Cullington H E, Bele D, Brinton J C. United Kingdom national paediatric bilateral project: demographics and results of localization and speech perception testing. Cochlear Implants Int. 2017;18(01):2–22. [PubMed] [Google Scholar]
50. Gifford R H, Driscoll C L, Davis T J, Fiebig P, Micco A, Dorman M F. A within-subject comparison of bimodal hearing, bilateral cochlear implantation, and bilateral cochlear implantation with bilateral hearing preservation: high-performing patients. Otol Neurotol. 2015;36(08):1331–1337. [PMC free article] [PubMed] [Google Scholar]
51. Ching T Y, Day J, Van Buynder P. Language and speech perception of young children with bimodal fitting or bilateral cochlear implants. Cochlear Implants Int. 2014;15 01:S43–S46. [PMC free article] [PubMed] [Google Scholar]
52. Illg A, Bojanowicz M, Lesinski-Schiedat A, Lenarz T, Büchner A. Evaluation of the bimodal benefit in a large cohort of cochlear implant subjects using a contralateral hearing aid. Otol Neurotol. 2014;35(09):e240–e244. [PubMed] [Google Scholar]
53. Polonenko M J, Giannantonio S, Papsin B C, Marsella P, Gordon K A. Music perception improves in children with bilateral cochlear implants or bimodal devices. J Acoust Soc Am. 2017;141(06):4494–4507. [PubMed] [Google Scholar]
54. Cullington H E, Zeng F G. Bimodal hearing benefit for speech recognition with competing voice in cochlear implant subject with normal hearing in contralateral ear. Ear Hear. 2010;31(01):70–73. [PMC free article] [PubMed] [Google Scholar]
55. Arndt S, Prosse S, Laszig R, Wesarg T, Aschendorff A, Hassepass F. Cochlear implantation in children with single-sided deafness: does aetiology and duration of deafness matter? Audiol Neurotol. 2015;20 01:21–30. [PubMed] [Google Scholar]
56. Ganek H V, Cushing S L, Papsin B C, Gordon K A. Cochlear implant use remains consistent over time in children with single-sided deafness. Ear Hear. 2020;41(03):678–685. [PubMed] [Google Scholar]
57. Deep N L, Gordon S A, Shapiro W H, Waltzman S B, Roland J T, Jr, Friedmann D R. Cochlear implantation in children with single-sided deafness. Laryngoscope. 2021;131(01):E271–E277. [PubMed] [Google Scholar]
58. Arndt S, Laszig R, Aschendorff A, Hassepass F, Beck R, Wesarg T. Cochlear implant treatment of patients with single-sided deafness or asymmetric hearing loss. HNO. 2017;65 02:98–108. [PubMed] [Google Scholar]
59. Speck I, Challier P, Wesarg T. Is the cochlear implant a successful long-term solution for single-sided deaf and asymmetric hearing-impaired patients? Eur Arch Otorhinolaryngol. 2021;278(09):3257–3265. [PMC free article] [PubMed] [Google Scholar]
60. Polonenko M J, Papsin B C, Gordon K A. Children with single-sided deafness use their cochlear implant. Ear Hear. 2017;38(06):681–689. [PubMed] [Google Scholar]
61. Lee H-J, Smieja D, Polonenko M J, Cushing S L, Papsin B C, Gordon K A. Consistent and chronic cochlear implant use partially reverses cortical effects of single sided deafness in children. Sci Rep. 2020;10(01):21526. [PMC free article] [PubMed] [Google Scholar]
62. Burton H, Firszt J B, Holden T, Agato A, Uchanski R M. Activation lateralization in human core, belt, and parabelt auditory fields with unilateral deafness compared to normal hearing. Brain Res. 2012;1454:33–47. [PMC free article] [PubMed] [Google Scholar]
63. Steel M M, Papsin B C, Gordon K A. Binaural fusion and listening effort in children who use bilateral cochlear implants: a psychoacoustic and pupillometric study. PLoS One. 2015;10(02):e0117611. [PMC free article] [PubMed] [Google Scholar]
64. Kral A, Kronenberger W G, Pisoni D B, O’Donoghue G M. Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurol. 2016;15(06):610–621. [PMC free article] [PubMed] [Google Scholar]
65. Pisoni D B, Kronenberger W G, Chandramouli S H, Conway C M. Learning and memory processes following cochlear implantation: the missing piece of the puzzle. Front Psychol. 2016;7:493. [PMC free article] [PubMed] [Google Scholar]
66. Beijen J, Snik A F, Straatman L V, Mylanus E A, Mens L H. Sound localization and binaural hearing in children with a hearing aid and a cochlear implant. Audiol Neurotol. 2010;15(01):36–43. [PubMed] [Google Scholar]
67. Grieco-Calub T M, Litovsky R Y. Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing. Ear Hear. 2010;31(05):645–656. [PMC free article] [PubMed] [Google Scholar]
68. Killan C, Scally A, Killan E, Totten C, Raine C. Factors affecting sound-source localization in children with simultaneous or sequential bilateral cochlear implants. Ear Hear. 2019;40(04):870–877. [PubMed] [Google Scholar]
69. Ehlers E, Goupell M J, Zheng Y, Godar S P, Litovsky R Y. Binaural sensitivity in children who use bilateral cochlear implants. J Acoust Soc Am. 2017;141(06):4264. [PMC free article] [PubMed] [Google Scholar]
70. Gordon K A, Deighton M R, Abbasalipour P, Papsin B C. Perception of binaural cues develops in children who are deaf through bilateral cochlear implantation. PLoS One. 2014;9(12):e114841. [PMC free article] [PubMed] [Google Scholar]
71. Kan A, Litovsky R Y, Goupell M J. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Ear Hear. 2015;36(03):e62–e68. [PMC free article] [PubMed] [Google Scholar]
72. Dietz M.Models of the electrically stimulated binaural system: a review Network 201627(2-3):186–211. [PubMed] [Google Scholar]
73. Aronoff J M, Yoon Y S, Freed D J, Vermiglio A J, Pal I, Soli S D. The use of interaural time and level difference cues by bilateral cochlear implant users. J Acoust Soc Am. 2010;127(03):EL87–EL92. [PMC free article] [PubMed] [Google Scholar]
74. Bernstein J GW, Stakhovskaya O A, Schuchman G I, Jensen K K, Goupell M J. Interaural time-difference discrimination as a measure of place of stimulation for cochlear-implant users with single-sided deafness. Trends Hear. 2018;22:2.331216518765514E15. [PMC free article] [PubMed] [Google Scholar]
75. Cushing S L, Papsin B C, Rutka J A, James A L, Gordon K A. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope. 2008;118(10):1814–1823. [PubMed] [Google Scholar]
76. Sokolov M, Gordon K A, Polonenko M, Blaser S I, Papsin B C, Cushing S L. Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear Res. 2019;372:52–61. [PubMed] [Google Scholar]